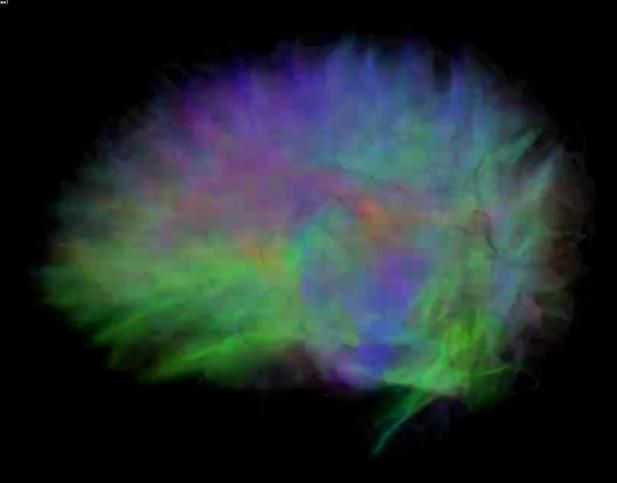
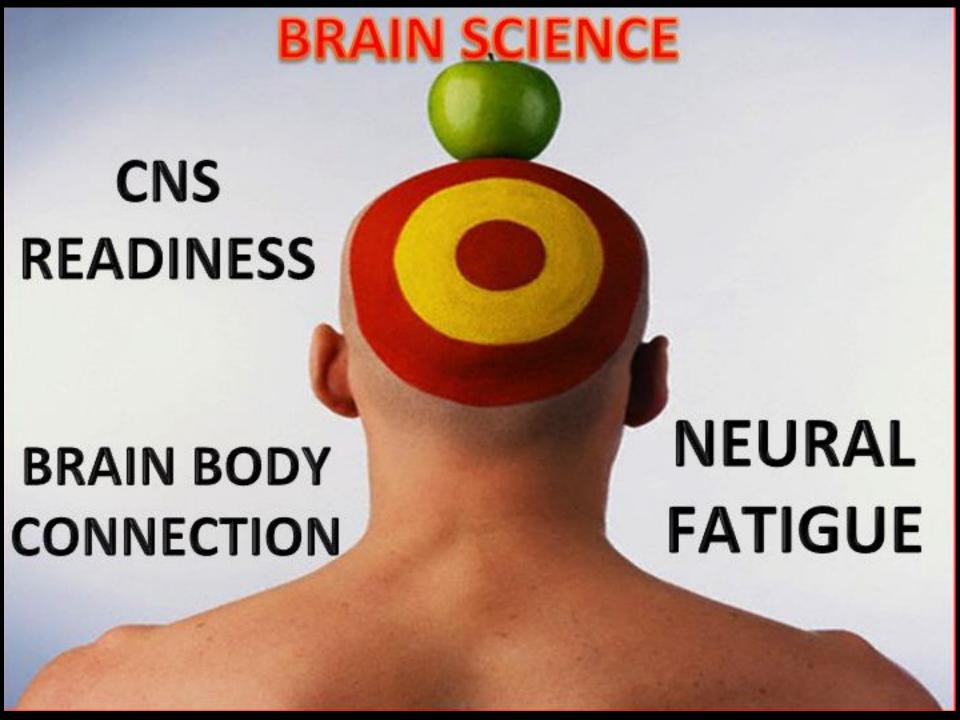


John Underwood HUMAN PERFORMANCE PROJECT

CNS READINESS

The single largest factor in athlete performance is CNS readiness

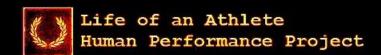



Brain Science

We have come a long way!

8388600 Neurone with 1447276530 tympsee. Simulation time: 138;5 We (heaf time feator: 0.0006e seminat; 0.0005e avg.) 0.48 970 (hys. 0.40); , Trame conduct time: 7732.24 Mayolee (avg. 7704.00 Mayoles)


MRI BOLD (Coronal View):

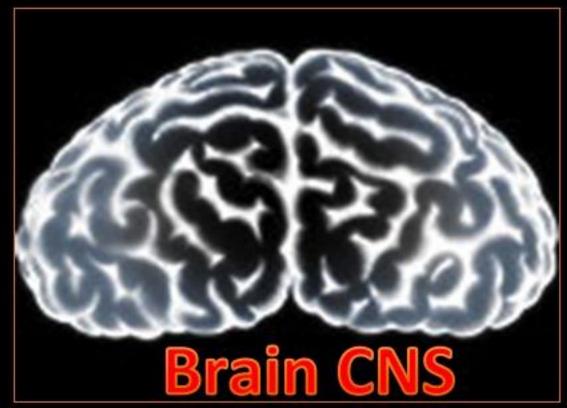


"CNS – a New Challenge and Possibility in High Performance Sports"

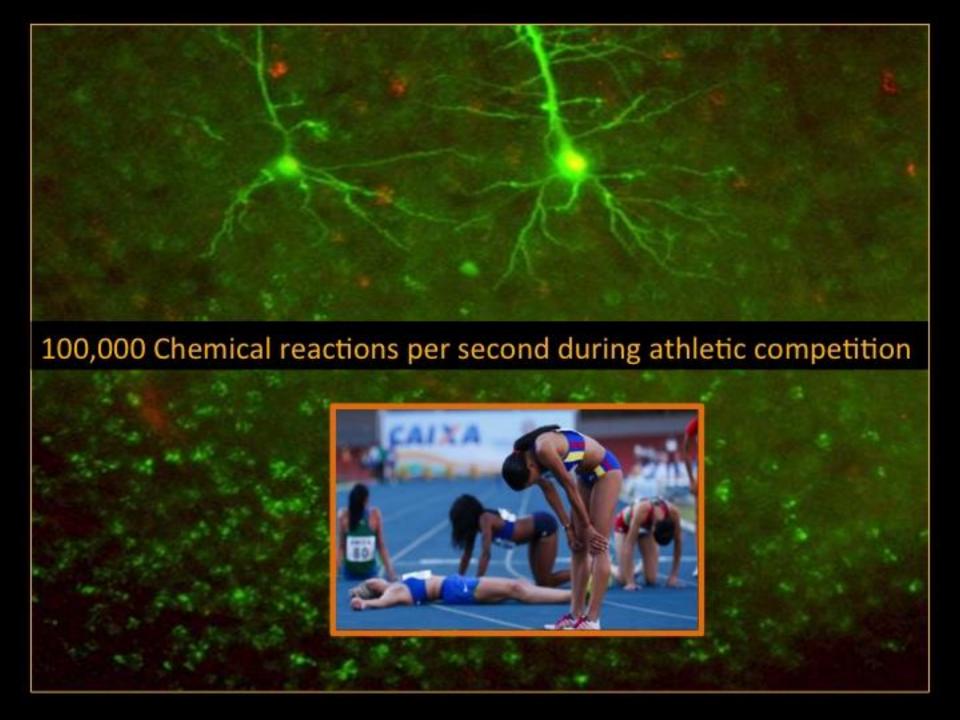
John Underwood USA

Optimal Athletic Performance

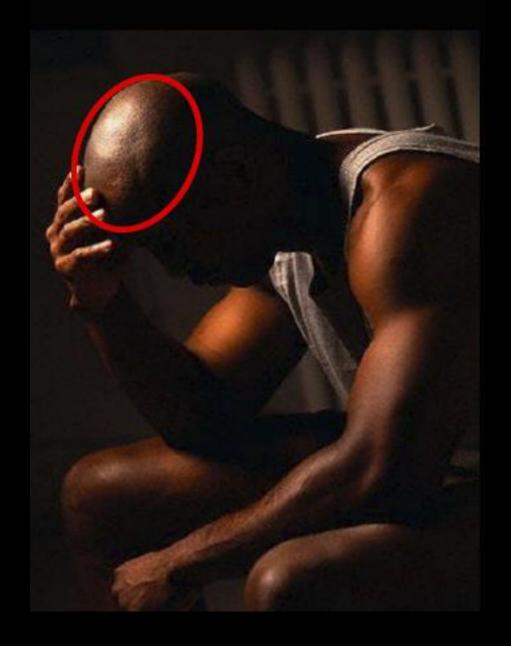
It starts with your brain!



Performance begins and ends in brain


Many Factors in Fatigue Highest Levels of Fatigue

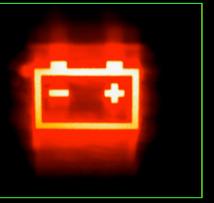
 Research shows that motor recruitment and fatigue during exercise will be affected by a huge variety of factors, including emotional state, mental fatigue, recovery from previous exercise, sleep, bloodglucose levels, motivation, self belief, prior knowledge of the duration of exercise, cerebral and arterial oxygenation, muscle glycogen storage, fluid loss, thirst, heat, and more. In fact, "the prediction of this model is that potentially everything ... can potentially affect athletic performance. But that the most important of these effects begin and end in the brain."



Brain is incredibly complicated Body is simple

•The conscious mind processes 40 bits of data per second

- •The unconscious mind operates at 40 million bits of data per second
- •Thinking delivers thoughts to 90 trillion cells
- •For every positive thought You have 16 negative thoughts.


NEGATIVE COACHING DOESN'T PRODUCE POSITIVE RESULTS

An f MRI map of a resting state network that shows the connections between the sub-regions of the thalamus with other parts of the brain. The different colors represent the overall functional association of the sub-regions with other areas of the brain.

What neuroscientists call its resting state. What the brain is doing when an individual is not focused on the outside world has become the focus

Even when at rest brain regions remain connected

It is all in your Head...

What makes awesome happen?

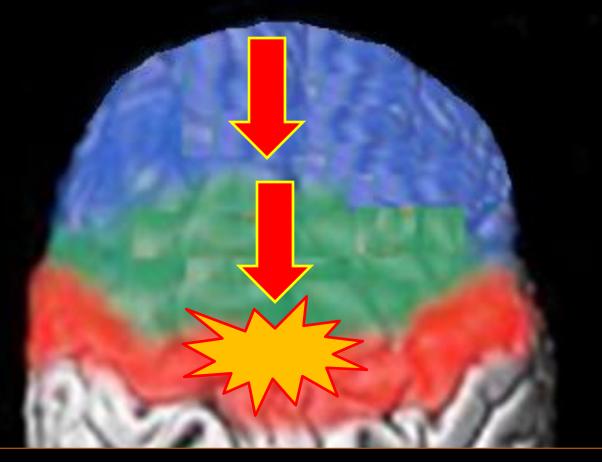
BRAIN SCIENCE

- Impact of Sleep on performance
- Impact of Alcohol and Marijuana on performance
- Impact of Technology Use on performance
- Impact of Neural Fatigue on performance
- Impact of Blood Glucose on performance
- Impact of Hydration of performance
- Impact of Stress on performance
- Impact of Mood on performance
- Impact of Energy Drinks on performance
- Impact of Diet on performance

CNS READINESS

Brain function during performance is being studied world wide. Whether you are an athlete, musician, actor, dancer, or student Central Nervous System (CNS) Readiness is the single biggest factor in performance.

Neural Drive


The brain provides what is known as neural drive to the body. This is the electrical signal sent

BRAIN MUST BE HIGHLY RESTED

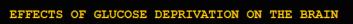
recruitment. Young athletes do not yet command this process but by training over time this activation develops. Eventually the recruitment increases force development and outputs.

MUSCLES MUST BE HIGHLY RESTED

Fatigue levels in the frontal cortex decrease functions in pre-movement and movement regions of the brain

Glucose makes you shine!

Glucose is the form of sugar that travels in your bloodstream to fuel the mitochondrial furnaces responsible for your brain power. Glucose is the only fuel normally used by brain cells. Because neurons cannot store glucose, they depend on the bloodstream to deliver a constant supply of this precious fuel. This means you must keep your blood glucose levels up during a long day in order to function at a high level for mental performance. This is just as important in practice as it is in a competition. A few sips of Gatorade or Powerade or some simple carbs or even non-acidic fruit will release glucose into your bloodsteam and you will perform! You can find info on this topic in the Power Back Diet!


Life of an Athlete Human Performance Project

NO GLUCOSE NO WAY

What your BRAIN runs on?

Even at 50mL levels of blood glucose, mental decline is in process. Focus, processing, attention, alertness, reaction, are affected. An athlete who eats lunch at 11:30 A.M. daily has potential 50mL levels which impair quality of training in the late afternoon or upon waking in the morning.

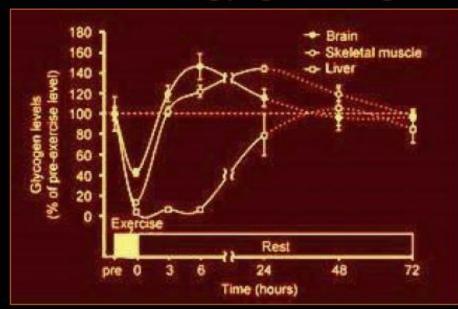
In the healthy normal functioning brain, glucose is the only substrate utilized for energy metabolism. Thus hypoglycemia (Low Blood Sugar) presents the brain with a very serious problem. Brain glucose consumption is normally about 10 mg per 100 ml., accounting for almost 75 percent of the liver's production of glucose and further attesting to the brain's heavy reliance and dependence on glucose. While most other tissues can shift to utilizing free fatty acids (FFA) as an alternative energy source when glucose is lacking, the brain cannot because they are excluded by the blood-brain barrier. While there is some evidence that the brain can utilize β -hydroxybutyric acid for energy metabolism when glucose levels are low or when fats are being mobilized for energy metabolism throughout the rest of the body, the brain could never supply its high energy demands by this method alone in the absence of glucose. Thus the brain is dependent on an uninterrupted supply of blood-borne glucose to energize its cells.

Decreases in blood glucose bring on disturbances in cerebral function. Depending on the level of hypoglycemia, these changes range from mild sensory disturbances to coma. At blood glucose levels of 19 mg per 100 mL or below (normal is 60 to 120 mg per 100 mL), a mentally confused state occurs. Brain O2 utilization falls to 2.6 mL per 100 g per minute (normal, 3.5 mL per 100 g per minute) and glucose utilization drops as well. Coma commences when glucose levels fall to 8 mg per 100 mL.

Life of an Athlete

REFUELING

1. BRAIN


2. MUSCLE

3. LIVER

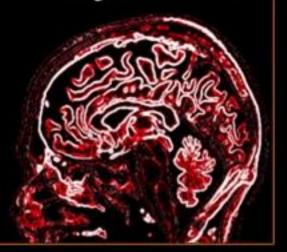
Glycogen Back

Order and rate of glycogen refueling

Life of an Athlete Human Performance Project

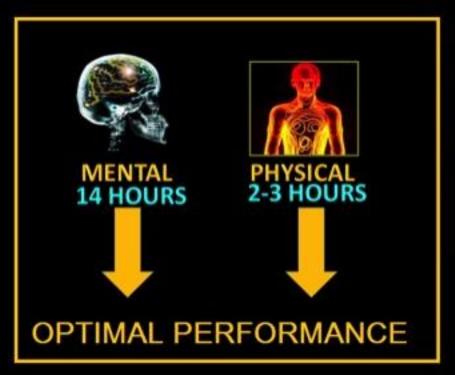
SLEEP AND COGNITION

Cognitive Output and Sleep


Restriction of sleep produces a neural sleep wave pattern that is sometimes observed in depression. A reduction in sleep reduces higher levels of cognition such as problem solving, high speed decision making, processing and reaction. Much of your sport depends on how you think and quickly react. Sleep and you will see more functional mental performance.

The brain
processes
400 billion
points of data
every second.

Is your brain ready to play?



A human brain produces as many as 12,000 to 50,000 thoughts per day depending on how deep a thinker a person is.

WEFACTYOU.COM

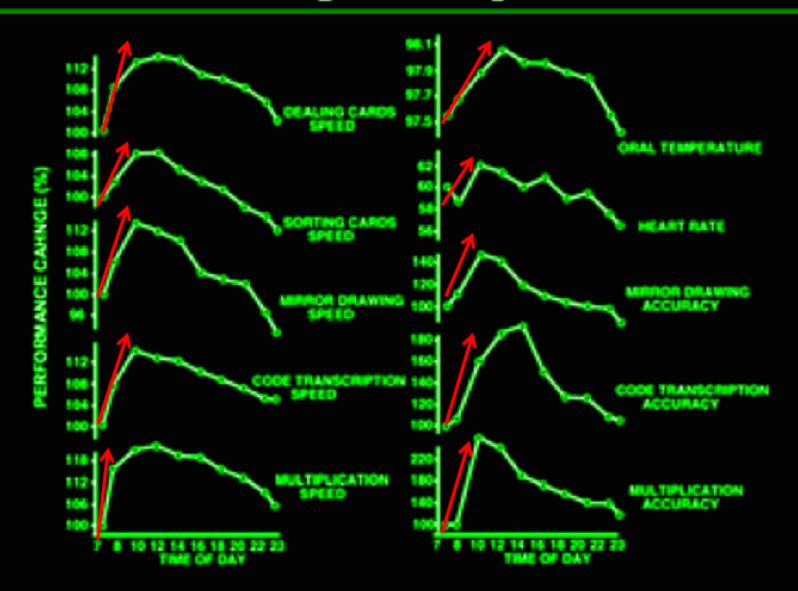
Duration of limits of performance

If the body and CNS is rested it can perform for long periods of time at high output capacities. Mental outputs of up to 14 hours and physical outputs up to 2-3 hours are possible. There are many factors that influence these time durations. Sleep, glucose levels, stress, fatigue, alcohol, marijuana... Studies indicate that CNS function clearly impact physical function. The CNS builds up energy reserves or deficits over one to three days and will function at those levels. Take into consideration every possible option to recover and recharge. You will increase the quality at which you train and compete.

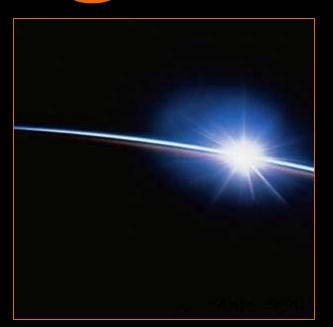
Life of an Athlete Human Performance Project

The human body was meant to be up for 16 hours and down for eight... The body can adapt to less sleep but mental and physical performance is degraded.

John Underwood Human Performance Project


2-3 Hours 14 Hours

Once in a state of fatigue the more you struggle to close the gap between what you can do and what you think you can do, the further down the performance curve you move and the more compromised you are! John Underwood Human Performance Project


Circadian rhythm of performance

Blatter et al., Physiol & Behav 2007

Signals

CNS as a PREDICTOR

 "Soviet coaches knew for decades that the condition of the athlete's nervous system is the most important variable in posting an elite performance and breakthrough neuroscience research by their fellow countrymen had given them an undeniable advantage over the rest of the world. Simple and effective tests of the CNS tonus were developed: the grip, the standing vertical jump, the critical blinking frequency, the latent reaction time, tapping with a pencil and hitting a maximal number of dots in 5sec, etc."

USSR 1940's- 1980's

Blink rates vary quite a bit depending on emotional and mental states. Stress and anxiety tend to increase a person's blink rate (SLOWER). Intense concentration tends to reduce the blink rate(FASTER), and if you're in a situation that implies some STRESS, your blinking rate can go way down (RAPID) -- presumably to INCREASE HYPERVIGILENCE.

HOW STRONG IS THE SIGNAL?


If our CNS is rested and ready we increase performance potential

CNS Readiness & Neural Connection

Increases in explosive <u>muscle</u>

<u>strength</u> (contractile RFD and impulse) were observed after heavy-resistance strength training. These findings could be explained by an enhanced neural drive, as evidenced by marked increases in EMG signal amplitude and rate of EMG rise in the early phase of muscle contraction.

Increased rate of force development and neural drive of human skeletal muscle following resistance training
Per Aagaard , Erik B. Simonsen , Jesper L. Andersen , Peter Magnusson , Poul Dyhre-Poulsen
<u>Journal</u> of Applied Physiology/Published1 October 2002Vol. 93no. 4,1318-1326DOI: 10.1152/japplphysiol.00283.2002

Nicolay Onokin WR PoleVault Olympic Champion USSR Master Coach and Scientist

Listen to the following recommendations on CNS by Prof. Nikolay Ozolin.

Buy a hand grip dynamometer of the kind used in physical therapy clinics and test yourself daily. Never change the testing protocol: do it at the same time of the day, with the same hand, in the same posture, with the same warm-up or lack of thereof, etc. Make only one attempt.

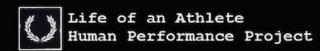
The number itself does not reflect the level of your CNS excitability; it is the pattern charted over time that matters. When your training load is appropriate, there will be little daily variance: 1-2kg or 2.2-4.4 pounds. A greater decrease indicates an excessive training load, an insufficient recovery, a nervous fatigue, an early phase of overtraining, or some disturbance in your regimen or your life. A slight drop for one to three days following a competition is normal however.

"Analysis of daily values of grip strength gives the opportunity not only to objectively control changes in the nervous system excitability, but also to direct it into the right direction with the help of the daily regimen, massage, training, and pharmacology," continues Ozolin. "A reminder: a calm and long cross country run through the woods lowers excitability and brief but intense work, including strength work, increases it. Training in the pre-competition days and a warm-up the day before the competition restrains an increase in excitability while passive rest filled with thoughts about the upcoming competition sharply increases it."

The Soviet champion, scientist, coach offers more advice on fine-tuning your CNS condition in the days before the competition:

- . Don't rest longer than 24 hours before the event.
- Perform a warm-up specific to your event 24 hours before the competition.
- Do a light workout if nervous on the days leading up to the competition.
- · Skip the workout if don't feel like training after the warm-up.
- Don't push it in the days after an unsuccessful competition. No point in punishing yourself... train light and do exercises that are not specific to your sport.

7' 4 1/4"



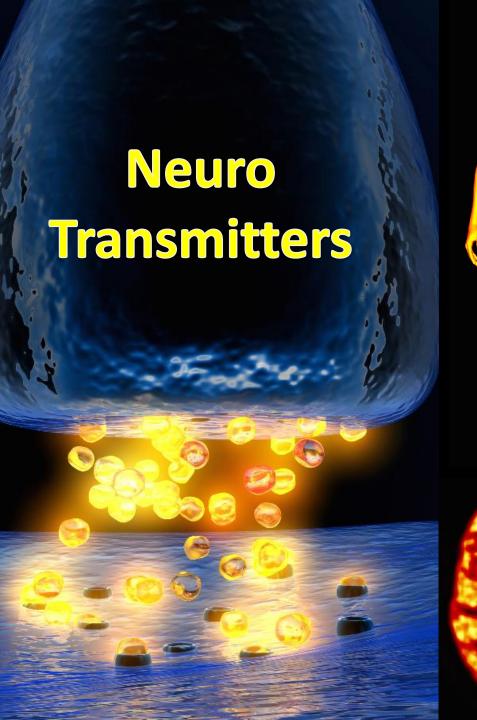
Brumel stradeled this height, a jump of 2.23 metres (7 feet 4 inches)!

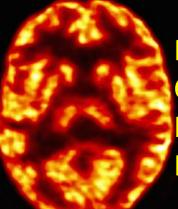
CNS Tests Used by Russians in 1961 to Show Performance Readiness

It was 1961 and Russians were flying high. Yuri Gagarin was the first man in space. Valery Brumel was breaking world records in the high jump. Every day the latter's coach would test his grip strength. He knew that this test was the simplest way to gage the work capacity and excitability of the athlete's CNS—the single most important variable in posting great results. That day the chart showed that the sportsman's grip had suddenly spiked up. The coach shook his head; he knew that this indicated premature peaking. He did not want his star jumper to leave his best performance in the gym—to get "discharged", as Russian athletes would say. So Brumel took a harder than planned workout and the excitation came down but several days later started climbing up again. Another workout, a light one this time, brought it down once more. The coach's adjustments worked like a charm. On the day of the championship Valery Brumel's grip strength was off the charts, his nervous system in peak form, another record fell...The Soviets knew in 1961 that the CNS was the most indicative measurable factor in performance and we are just getting on this page in 2015. Much of our Human Performance Project has been associated with this CNS readiness phenomenon. We have utilized simple phone apps to measure on a day to day basis athlete readiness to train and compete. That is the power of science that can make you a champion!

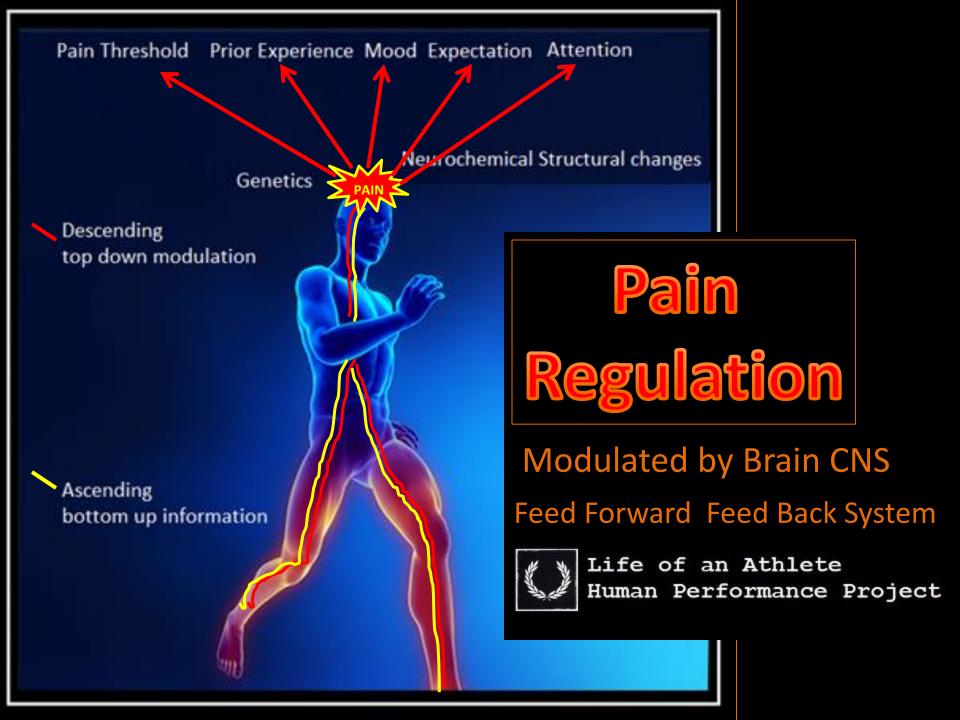
Soviet coaches knew for decades that the condition of the athlete's nervous system is the most important variable in posting an elite performance and breakthrough neuroscience research by their fellow countrymen had given them an undeniable advantage over the rest of the world. Simple and effective tests of the CNS tonus were developed: the grip, the standing vertical jump, the critical blinking frequency, the latent reaction time, tapping with a pencil and hitting a maximal number of dots in 5sec, etc.

6 World Records and each one predicted prior to competition!


7' 4 1/4"

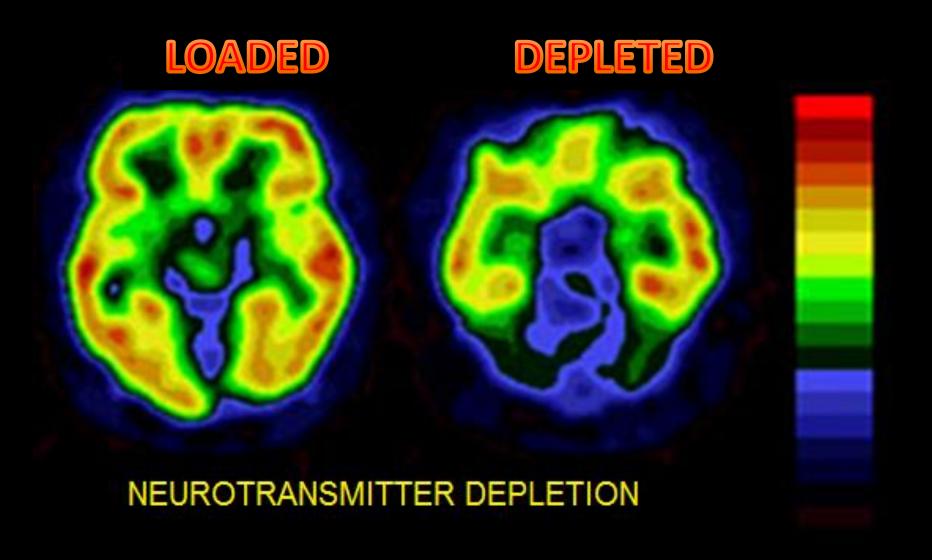

predicted by his coach prior!

Initiation of movement
Power Outputs
Force Development
Neural Drive
Reaction


Focus
Concentration
Processing
Reaction

Cognitive function

Initiation of human movement



Five ascending pain-conducting neuronal pathways

The importance of the connection between serotonin and dopamine stems from the balance that must be maintained within the body for brain /body function

RELOADED DURING SLEEP

DOPARALLA

REWARD

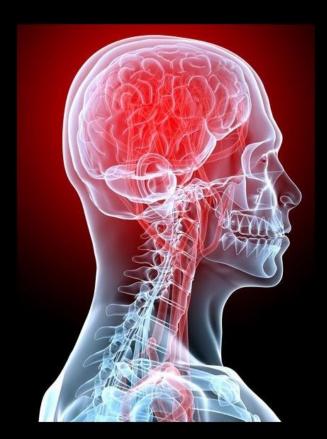
ALERTNESS ENERGY

MOOD

ANXIETY

OBSESSIONS AND COMPULSIONS

SEROTONIN


> MOTOR NEURON ACTIVITY

NEUROTRANSMITTERS

Serotonin

CNS Fatigue Serotonin and Dopamine

CNS Fatigue is that there are not one, but two points from which our muscles can become fatigued: 1) in the muscle itself; and 2) at the point of origin of the muscular contraction (the central nervous system). Fatigue in the muscle itself is referred to as peripheral fatigue while fatigue at the point of origin is known as central fatigue.

Much of the research into CNS fatigue has focused on Serotonin (5-HT) and Dopamine due to their roles in regulating functions such as sensory perception, mood and perceived exertion. Research suggests that an imbalance in these neurotransmitters-Particularly, a spike in Serotonin and a drop in Dopamine levelsis associated with the onset of CNS fatigue. The theory is the high 5-HT/low Dopamine brings on CNS fatigue with low 5-HT/high Dopamine resulting in enhanced performance.

Life of an Athlete Human Performance Project

Results in CNS Fatigue

As soon as the body starts moving, serotonin is released. It functions as an accelerator for movement and makes motor neurons more active.

It is actually a surplus of serotonin that triggers a braking mechanism in the brain. In other words, serotonin functions as an accelerator but also as a brake when the strain becomes excessive.

Jean-François Perrier from the Department of Neuroscience and Pharmacology

Serotonin spillover onto the axon initial segment of motor neurons induces central fatigue by inhibiting action potential initiation.

Florence Cotela, Richard Exleyb, Stephanie J. Craggb, and Jean-François Perriera,1 aDepartment of Neuroscience and Pharmacology, University of Copenhagen, 2200 Copenhagen, Denmark; and bDepartment of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom

Serotonin Surplus Triggers Breaking Mechanism

Life of an Athlete Human Performance Project Can't run any further because your legs have turned to jelly? You're not exhausted - it's your brain that's tired, say scientists!

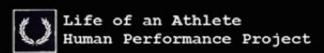
The University of Copenhagen, in Denmark, think that they can now explain why our brains feel tired when we exercise.

They mapped the mechanisms behind so-called central fatigue - the braking mechanism in the brain that swings into effect to make us too tired to continue exercising.

Associate Professor Jean-Francois Perrier, from the Department of Neuroscience and Pharmacology, explained: 'We have always known that the neurotransmitter serotonin is released when you exercise, and indeed, it helps us to keep going.

'However, the answer to what role the substance plays in relation to the fact that we also feel so exhausted we have to stop, has been eluding us for years.

'We can now see it is actually a surplus of serotonin that triggers a braking mechanism in the brain.

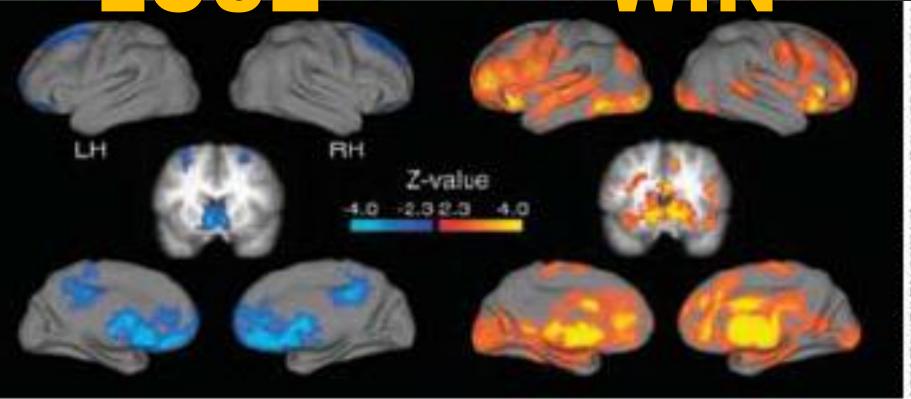

Psycho-Physiological Preparation

The brain isn't just a finely tuned control center, but also a sensor that can detect and react to self-doubt and hesitation. It interprets doubt as a signal that the body isn't up to the task. If you worry about completing a race before it begins you've already lost - your legs will feel tired from the start even if you're fit.

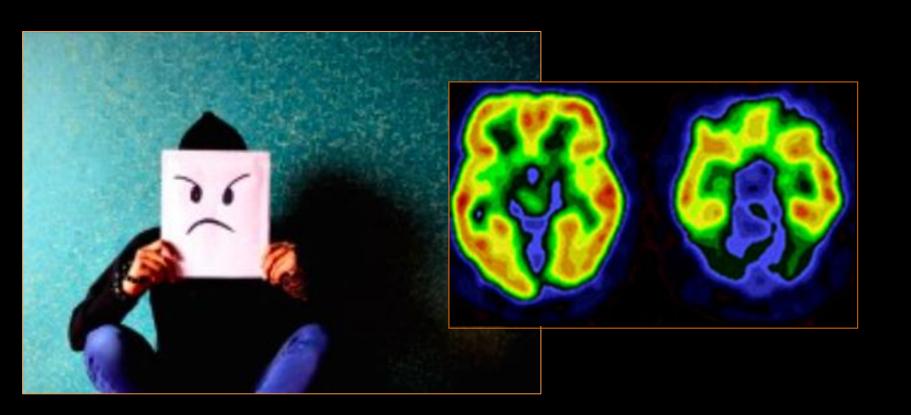
If you really believe you can win - not just think it but deeply believe it because you're fit, at the peak of physical preparation and know you're capable - your brain takes this confidence and programmes your body for optimal performance. If you visualise your victory, 'taste' it before the race begins and train with victory foremost in your mind, chances are excellent you'll produce your best possible performance.

Your Brain and Your Expectations

Tim Noakes

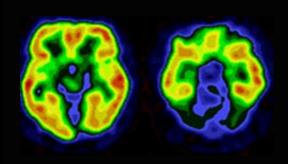

Mental Preparation Psychological Preparation Physiological Function

The brain interprets doubt as a signal that the body is not ready for high level physical performance



man will never fly the summit of mt.everest will never be conquered the solutions and barrion will

negative thoughts

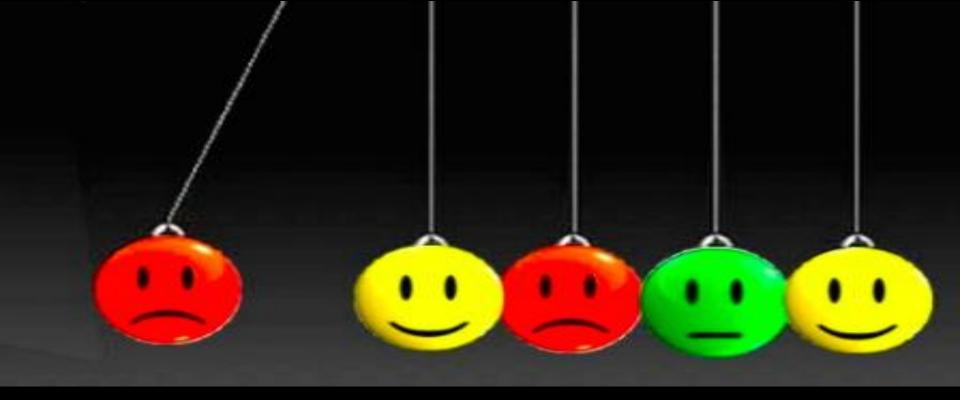

DEPLETED DOPAMINE

DECREASED MOTIVATION

The ratio of serotonin and dopamine determines

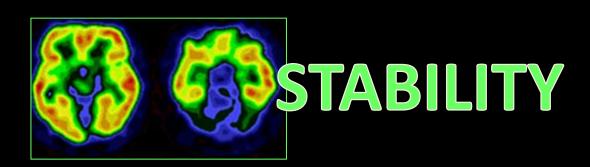
MOOD REGULATION INSTABILITY IMPULSIVITY REACTIVITY

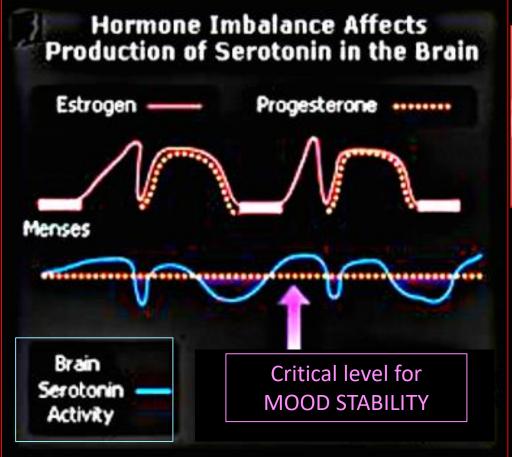
DEPLETED SEROTONIN



Decreased Brain/Body Function

DEPLETED DOPAMINE

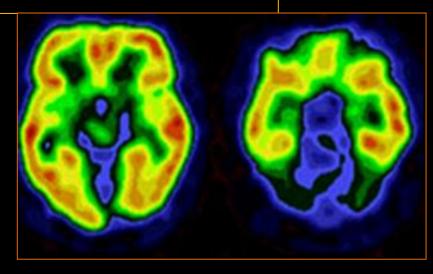



DECREASED MOTIVATION

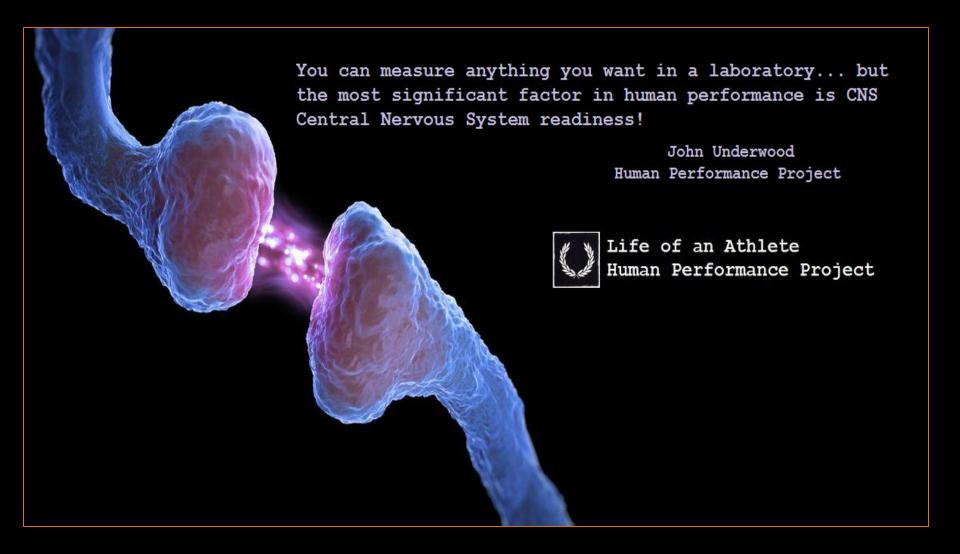
Mood Stability and NT Ratios of SEROTONIN AND DOPAMINE

MOOD

FEMALE COMPLICATIONS



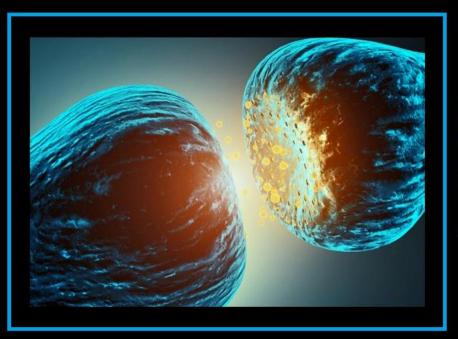
PMS symptoms, including mood issues, occur during the last (luteal) phase of the menstrual cycle, which starts after ovulation typically day 14 to 28 of a woman's monthly cycle. Once menstruation starts, mood swings usually disappear.


DEPLETED SEROTONIN

DECREASED MOOD

How fast * How long* How strong*

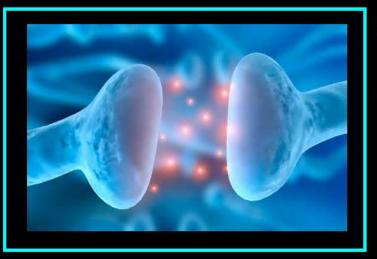
REACTION for 100 Years


For more than a century, the accepted figures for mean simple reaction times for college-age individuals have been about 190 ms (0.19 sec) for light stimuli and about 160 ms for sound stimuli (Galton, 1899; Fieandt *et al.*, 1956; Welford, 1980; Brebner and Welford, 1980).

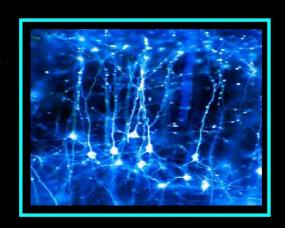
NOW .186

Fastest Gamer 0.191 slowest is .246. Fastest Non-Gamer is .209 slowest is .318.

Diminishing Speed of Transmission


The need for speed

Reaction time in training athletes is .186 msecs. for sight reaction and .160 msecs. to sound. Many variables effect these speeds as signals travel from brain, down the spinal pathways to nerve junctions at the site of neuro-muscular connection. Our projects have examined blood glucose levels, sleep, stress, metabolic fatigue, neural fatigue, muscular fatigue, alcohol, marijuana, and many other negative issues related to decreased mental and physical performance.


Life of an Athlete Human Performance Project

400 km / hr

Nerve Impulses travel at over 400 km/hr (250 mi/hr)

Don't slow down your performance!

Life of an Athlete Human Performance Project

Reaction for training athletes

.186 msec

.186 Optimal

.231 Neural Fatigue
.246 No sleep
.248 Low blood glucose
.305 Alcohol

.300 .312 .450 Marijuana

3-4x/week

1x/ week

BRAIN Nerve Nerve Junction CNS

Under the highest levels of fatigue

The decline in ability of a muscle to generate force.

There are two main causes of muscle fatigue - limitations of nerve's ability to generate a sustained signal and the reduced ability of calcium (Ca2+) to stimulate contraction.

Muscle cells work by detecting a flow of electrical impulses from the brain which signals them to contract through the release of calcium.

The muscle's ability to generate force is most strongly limited by nerve's ability to sustain a high-frequency signal.

Part of the process of training is increasing the nerve's ability to generate sustained, high frequency signals which allow a muscle to contract with its greatest force for longer time duration.

Life of an Athlete Human Performance Project

SIGNAL?

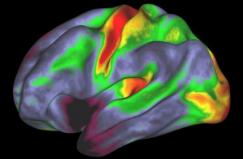
Myelin Thickness > Speed

Myelin Thickness


Myelin is an insulating layer, or sheath, that forms around nerves, including those in the brain and spinal cord. It is made up of protein and fatty substances. The purpose of the myelin sheath is to allow electrical impulses to transmit quickly and efficiently along the nerve cells. If myelin is damaged, the impulses slow down. Myelin thickness is an indicator of fast nerve transmission pathways. An athlete that practices a skill movement over and over and over will develop such pathways.

Alcohol downregulates the expression of genes that form myelin.

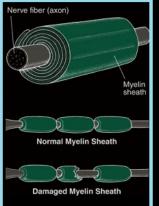
Myelin is Speed

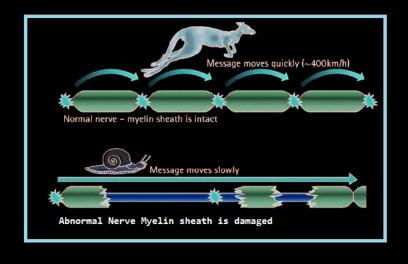

Just like the insulation on wires. myelin has much to do with the transduction of nerve impulses to your muscles. More importantly the speed of those impulses. Myelin is a dielectric (electrically insulating) material that forms a layer, the myelin sheath, usually around only the axon of a neuron. It is essential for the proper functioning of the nervous system. The production of the myelin sheath is called myelination. In humans, myelination begins in the 14th week of fetal development, although little myelin exists in the brain at the time of birth. During infancy, myelination occurs quickly and continues through the adolescent stages of life.

The main purpose of a myelin layer (or sheath) is to increase the speed at which nerve impulses propagate along the myelinated nerves.

Myelin in Motor

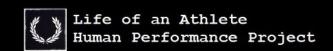
Myelin Density in Brain





Life of an Athlete Human Performance Project

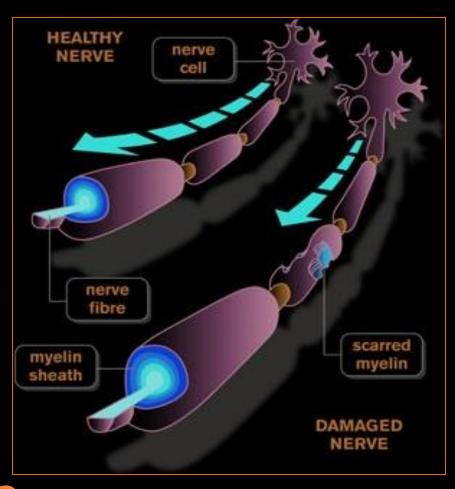
Myelin map of the human brain created by magnetic resonance imaging. David Van Essen/ Washington University School of Medicine. See: Mapping Human Cortical Areas in vivo Based on Myelin Content as Revealed by T1- and T2-weighted MRI



Myelin =Speed

Myelin is a sausage-shaped layer of dense fat that wraps around the nerve fibers — and that its seeming dullness is, in fact, exactly the point. Myelin works the same way that rubber insulation works on a wire, keeping the signal strong by preventing electrical impulses from leaking out. This myelin sheath is, basically, electrical tape, which is one reason that myelin, along with its associated cells, was classified as glia (Greek for "glue"). Its very inertness is why the first brain researchers named their new science after the neuron instead of its insulation. They were correct to do so: neurons can indeed explain almost every class of mental phenomenon—memory, emotion, muscle control, sensory perception and so on. But there's one question neurons can't explain: why does it take so long to learn complex skills? Myelin get thicker when the nerve is repeatedly stimulated. The thicker the myelin gets, the better it insulates and the faster and more accurately the signals travel. As Fields puts it, "The signals have to travel at the right speed, arrive at the right time, and myelination is the brain's way of controlling that speed."

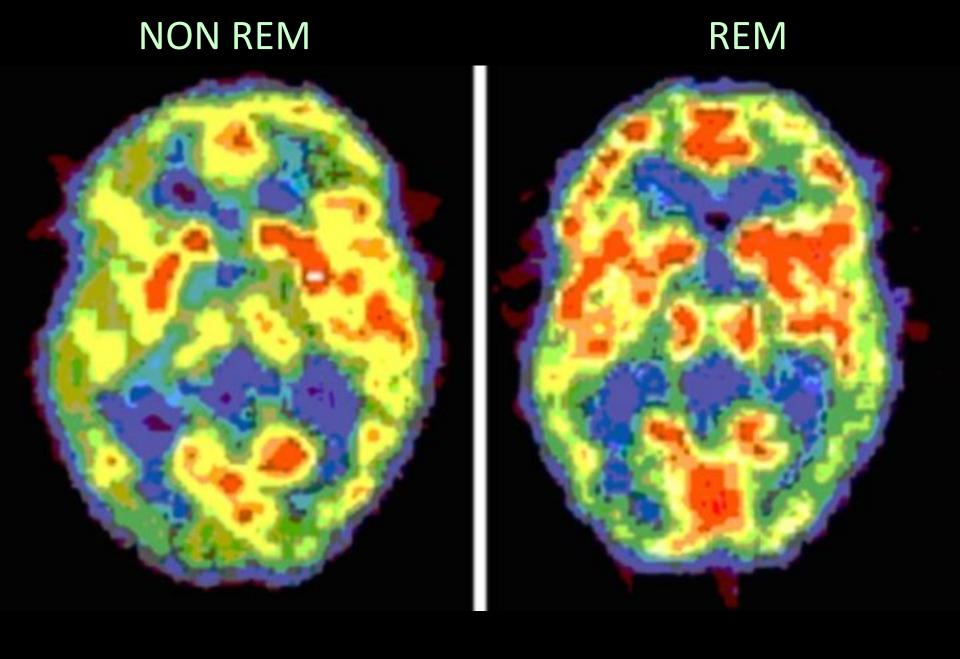
In children, myelin arrives in a series of waves, some of them determined by biological code, some of them dependent on activity. These waves last into young adulthood. Until this time, the brain is extraordinarily receptive to learning new physical skills.



Life of an Athlete Human Performance Project

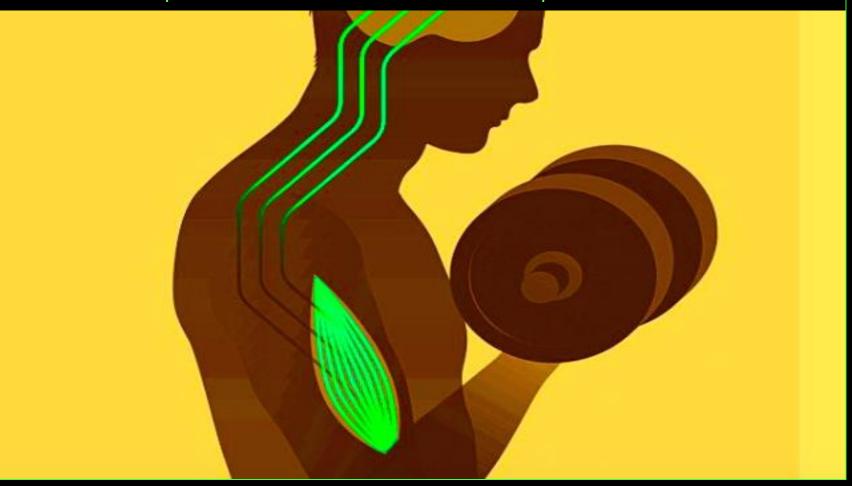
• The inflammation process may lead to various degrees axonal injury

This signals poorer recovery


Inflammation
Myelin Damage

AWAKE REM

90% SPEED



When the brain is fatigued it makes mistakes

Neural Drive

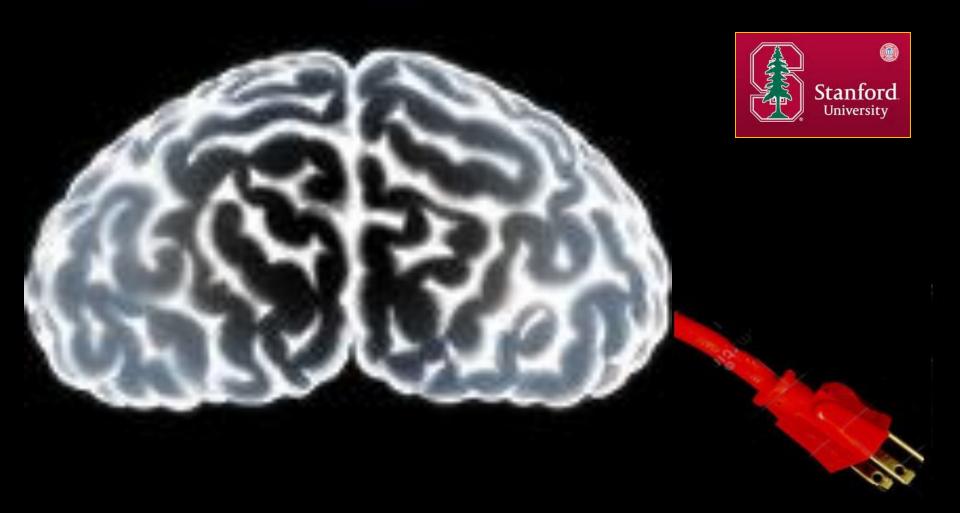
The brain provides what is known as neural drive to the body. This is the electrical signal sent from the brain to the muscular system, which activates muscle fibers that are responsible for generating power. After heavy stress from high impact training or loads above 90% or speeds above 90% this connection is impaired.

The brain builds up energy deficits or energy reserves over several days and will function at that level.

CNS READINESS

REST NAPS DOWN TIME SLEEP

WHY BRAIN FATIGUES


Neural Fatigue

Brain function under the highest levels of fatigue is a contibutuing factor in performance levels being maintained or reduced. Connections to muscle function have been documented which disprove the previous theories that depleted oxygen levels led to increasees in lactic acid levels, which in turn led to muscle dysfunction. This is clearly not the case. When you examine the splits in a 10,000m race and discover that often the last kilometer is the fastest of all, with closing speeds just over 50 seconds for the final 400m it is clear that muscle function is not decreased. This is the new focal point of studies on fatigue and performance. Much of these studies will be centered on the brain and CNS.

What brings it back!

RECHARGING THE BRAIN

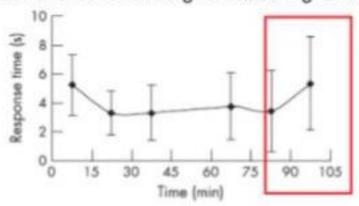
Life of an Athlete Human Performance Project

Don't waste your CNS readiness on mindless neural processes!!!

Save your energy for a chance to show what you are capable of. The CNS builds up energy reserves or deficits over 1-3 days. Overuse of technology has been linked to neural fatigue and decreased performance. Go out today and set a new personal best!

Neural Fatigue OVERSTIMULATION

POTENTIAL ORIGINS OF FATIGUE: MENTAL FATIGUE


ORIGINAL ARTICLE

A continuous mental task decreases the physiological response to soccer-specific intermittent exercise

Matt Greig, David Marchant, Richard Lovell, Peter Clough, Lars McNaughton

Br J Sports Med 2007;41:908-913. doi: 10.1136/bjsm.2006.030387

- 10 semi-professional soccer players completed a 90-minute laboratory-based treadmill protocol replicating the activity profile of soccer match-play.
- 2 separate trials were performed in randomised order, with and without the added stressor of a continuous grid-based vigilance task.

4 Facilitate mental recovery

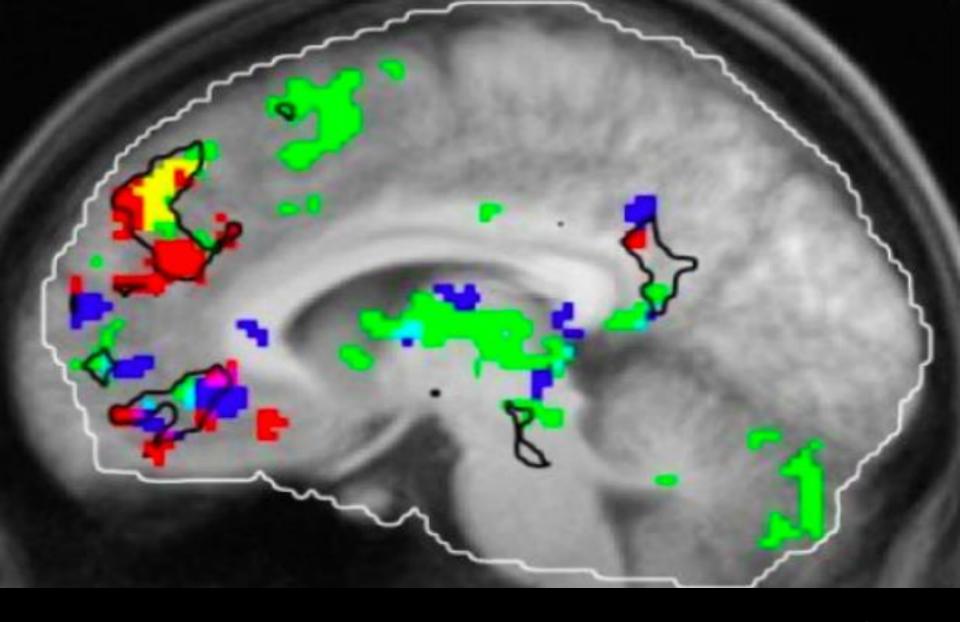
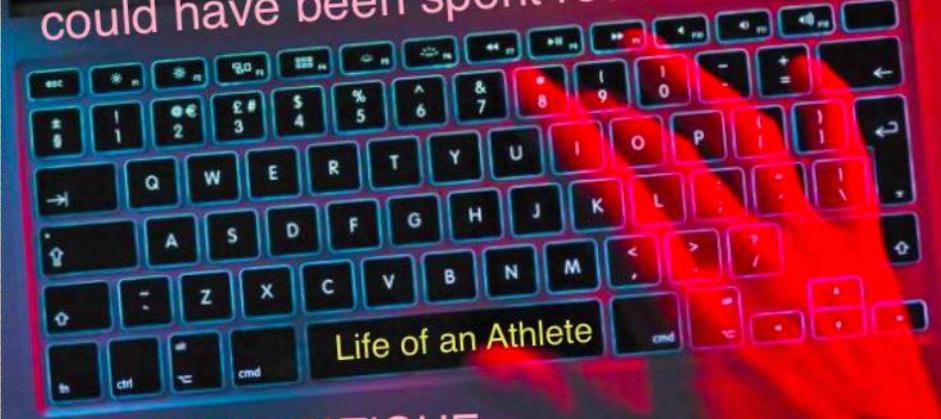


Figure 8 Mean (±SD) number of errors made during the vigilance task.


The amount of information we are now exposed to has increased more in the last 50 years than in the previous 5,000.

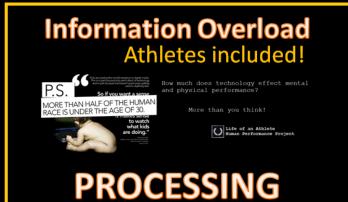
"Every piece of information you are consciously or unconsciously exposed to - has to be processed by your brain!"

WHAT IS THIS SCAN?

Every minute you spend doing this could have been spent recovering!

NEURAL FATIGUE RUINS PERFORMANCE

It is very clear that these technology issues begin at a very early age.

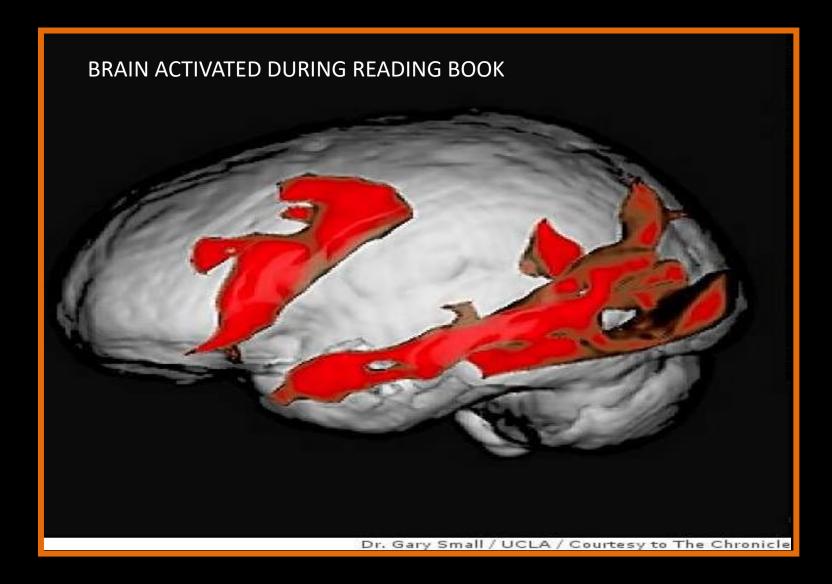


This is not rest This is not sleep This is not recovery

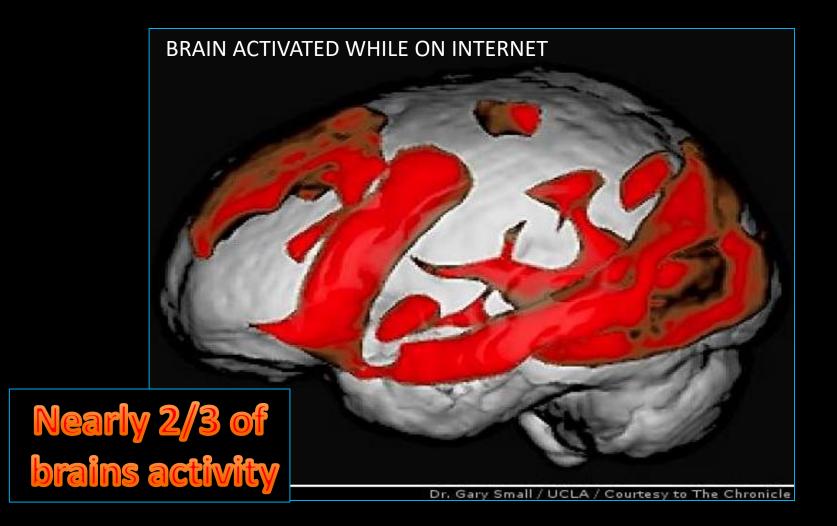
This is the difference between what you say you want the most and what will prevent it from ever happening...

Life of an Athlete Human Performance Project

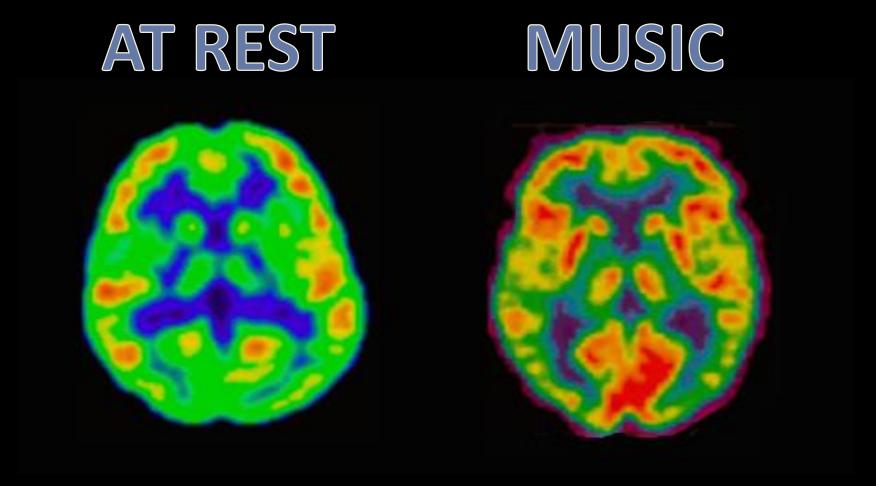
The problems associated with technology and CNS fatigue are real. Constant input to the processing regions of the brain result in neural fatigue which in turn creates fatigue in the pre-movement and movement regions of the brain. This affects training, training effect, recovery and competition capabilities. Video games, texting, emailing, TV, facebook and computer work time has greatly increased the total time per day we all input information, consciously or subconsciously to our brains. If you want to train and compete at your best make some choices!



Life of an Athlete Human Performance Project

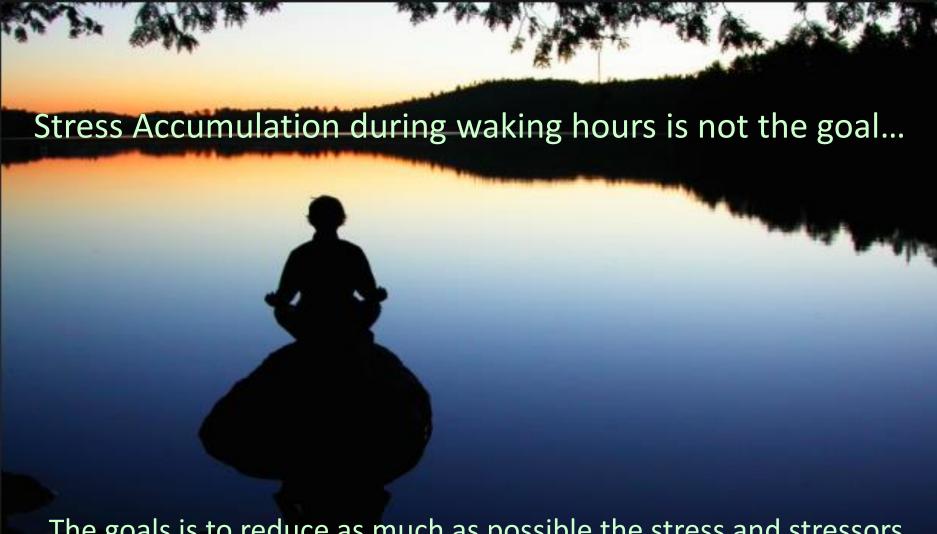

Unprecedented Processing

We now process more information in the last ten years than the previous 5000 years


READING

ON INTERNET

LISTENING TO YOUR TUNES IS NOT RESTING YOUR BRAIN



Listening to music has a global effect on brain activity...

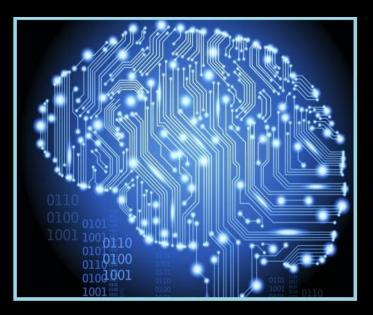
Learn to relax with no stimulation

Even listening to music stimulates the brain and CNS.
As a matter of fact, music's effect on the brain is global. If you want to spare CNS energy learn how to simply clear your mind and relax.

The goals is to reduce as much as possible the stress and stressors that impact high level mental and physical performance...

MOST COMMON CAUSE OF SLEEP DISTURBANCES

SAME AS THIS



Blue Light Sources

Blue light has impact on all humans...

USA TEENS 8.5 hours/day

Constant Stimulation

In the US, teenagers are spending 8.5 hours using computers, mobiles and other devices to learn, interact and play. This jumps to 11.5 if you take into account all of the tech multi-tasking that goes on, such as talking on the phone while you're watching TV. As they stare at these screens, they're taking in and sifting through an incredible amount of information; Constant input can create neural fatigue. When your brain is tired of processing this constant input it also begins to fatigue other critical areas of brain function. Combine these unprecedented hours of brain stim with minimal sleep and you have a generation of tired kids. Many of these individuals are athletes. Choices determine outcomes!

Life of an Athlete Human Performance Project

11.5 with Multitasking

We have identified more than 110 types of sleep disturbances

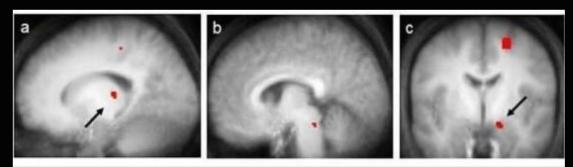
All capacities are diminished!

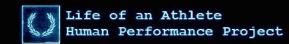
Life of an Athlete Human Performance Project

Causes of sleep disturbances

Life of an Athlete Human Performance Project

TV, smartphone, iPad, and Computer screens emit a type of light that Can stimulate your brain, suppress the production of melatonin, and interfere with your body's internal Clock.


Avoid Blue Light and total darkness


It only takes a minute...

Modification of the activity of the thalamus (a), brainstem (b), and amygdala (c) induced by a blue light exposure. Credit: Modified from Vandewalle et al. 2007 PLoS One

By using very short exposures to light (< 1 minutes), in combination with brain imaging techniques, the researchers could identify the brain areas that are involved in the initial responses to this light. The brain areas that responded to blue light exposures included areas in the brain stem and the thalamus. These areas are involved in the regulation of very basic aspects of brain function, such as the regulation of alertness and sleepiness.

BLUE LIGHT EXPOSURE

1:00

Even one minute of blue light exposure can cause a sleep disturbance!

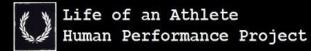
Prevents Brain Shutdown

SHUTS OFF SLEEP HORMONE

BLUE LIGHT IS EVIL FOR ATHLETES


Blue light is integral to our health - in the correct amounts. When we're exposed to levels of anything in excess (or too little) of what we would have experienced for the bulk of our evolutionary history, problems arise. Blue light regulates our secretion of melatonin, the sleep hormone. Exposed to blue light, we limit the production of melatonin, and we stay alert and awake; in the absence of blue light, melatonin production ramps up, and we get sleepy. This system worked quite well for a long time. Reddish light from fire (our former primary source of nighttime illumination) has little to no effect on melatonin production, so sleep wasn't disrupted when we relied on fire. These days, though, we're subject to a steady barrage of blue light. During the day, blue light (natural or unnatural) isn't much of a problem because we're supposed to be awake, but at night, when we're "supposed" to be getting ready to sleep, we tend to sit in front of blue lightemanating appliances, and our sleep suffers for it. We minimize our release of melatonin and stay alert and stimulated rather than becoming sleepy. Use of blue light after dinner is a bad idea for athletes who want to sleep and recover and release HGH and get REM to reboot the CNS and brain for your workout or competition tomorrow.

> Life of an Athlete Human Performance Project


Delays brains transition from wake state to sleep

90 minute plan

No LCD or blue light or backlit devices for 90 minutes prior to sleep!

Greatly reduces sleep disturbances

Blue light keeps you awake and throws off your Bio- rhythyms!

Blue Light Tips for Athletes

Evening blue light is problematic, and there are some simple steps you can take to mitigate its late-night effect on your sleep.

Keep electronics usage to a minimum or completely eliminate blue light (alarms, TVs, laptops) after dark.

Go to sleep earlier.

Use candlelight.

Keep your room as dark as possible and your sleeping quarters pitch black.

Install F.lux (totally free) on your computer to cut down on blue light emissions.

If you want to try a somewhat extreme experiment you could even wear orange safety glasses at night.

Do not use blue light devices in total darkness (see pic)

Life of an Athlete Human Performance Project

Limit blue light at night

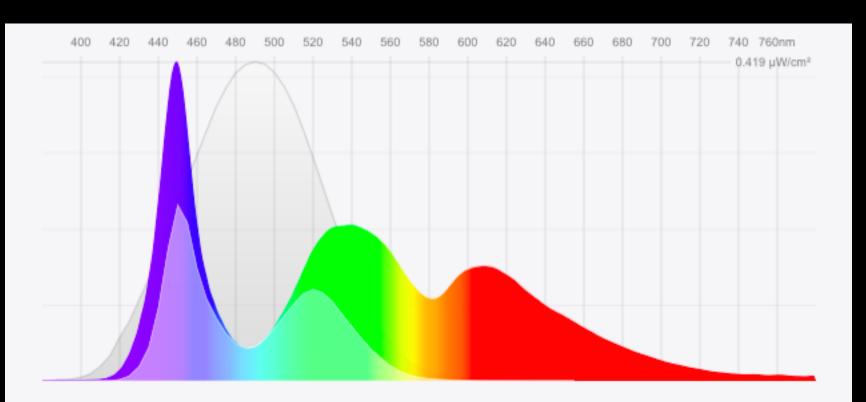
90 MINUTE RULE

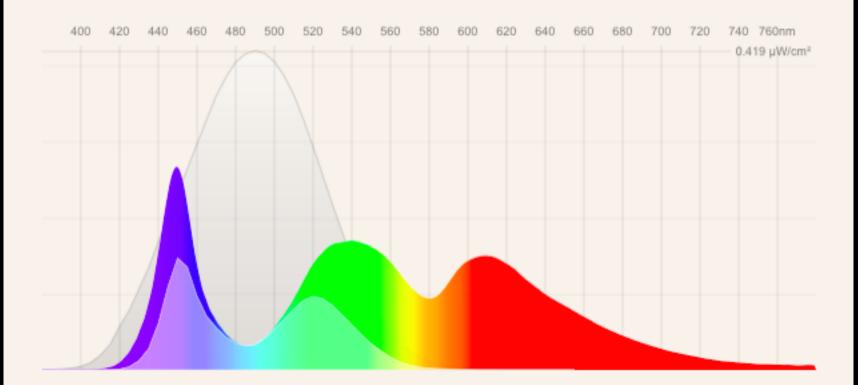
BLUE LIGHT TIME 8:00 PM

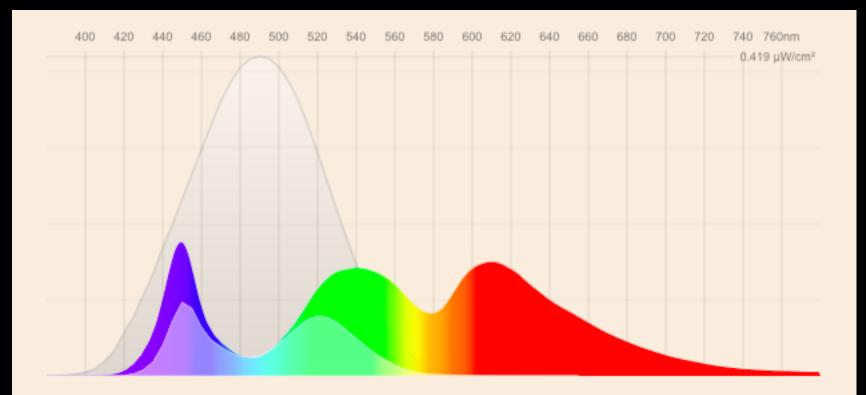
Create An Electronic Sundown.

The smallest amount of light can impact your Melatonin levels (the sleep hormone) About ninety minutes before bed, turn off all electronic devices in your bedroom.

Life of an Athlete Human Performance Project


Blue Light Reducing Computer Glasses


Blue light acts differently on the retina than the rest of the light color spectrum. Ever look at a blue LED and noticed a halo around the light? Staring at it gives you a headache, doesn't it? Guess why! Your eyes are straining to try and bring that fuzzy spot into focus, and it just can't!


Exposed to blue light, we limit the production of this melatonin, sleep hormone, and remain awake and alert. In the absence of blue light, however, melatonin production increases and we get tired.

Getting enough sleep is a task that challenges many athletes, but doing what you can to help your body rest naturally can greatly improve the quality of the sleep that you are able to get. By avoiding blue light in the evening and right before bed, you can help your body produce the optimal amount of melatonin and you can fall asleep in a natural way. Additionally, you will reap all of the benefits that a healthy sleep cycle provides, which is pivotal to recovery in all body systems. Optimal training requires sufficient sleep.

FILTERS

WAKE UP

INCREASED ALERTNESS
INCREASED WAKEFULNESS
DECREASED GROGGINESS
MELATONIN SHUTDOWN

10,000 LUX

Results in just 20-30 min/day; use while reading, working

Even brightness, ultimate eye comfort

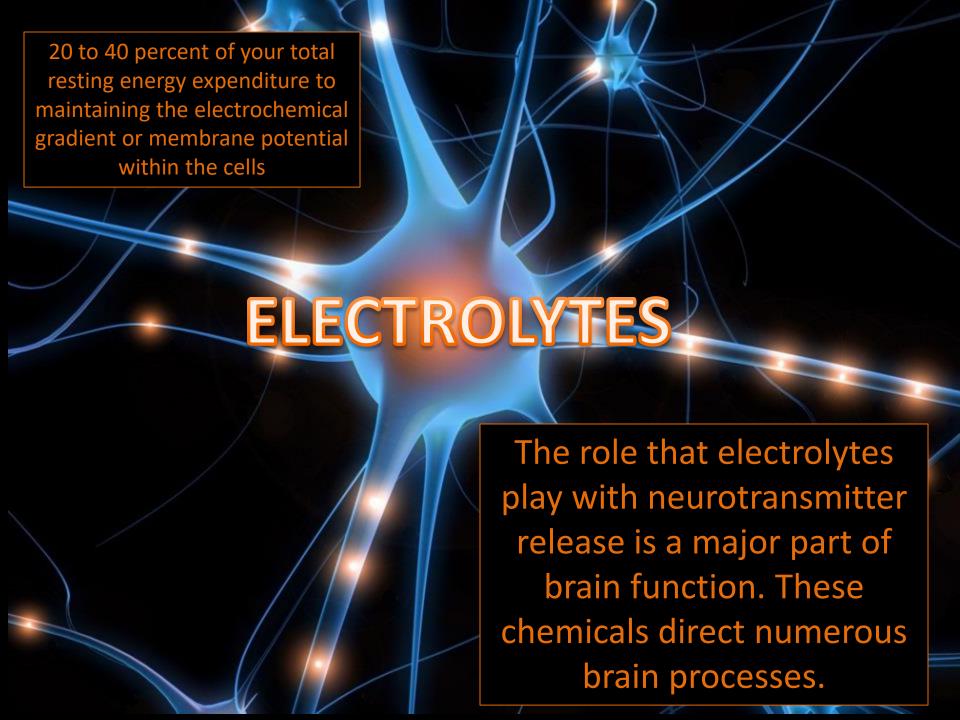
100% UV free light - safe for eyes and skin

100+ years of Philips lighting and healthcare know-how

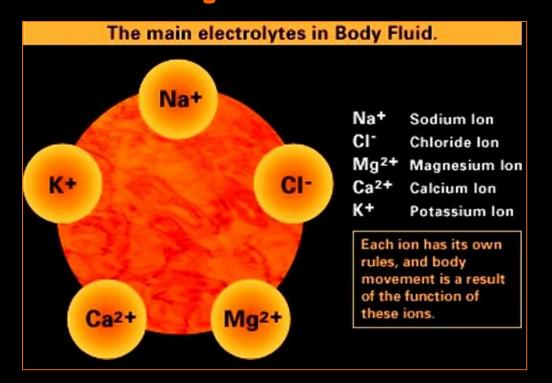
Improves energy levels, alertness and mood

Fights energy dips, fatigue and winter blues

Light is a natural energiser that fits in with a healthy lifestyle


Independent research confirms improved energy levels

As effective as much larger 10,000-lux white lights


Has a similar effect on wellbeing to a sunny blue sky

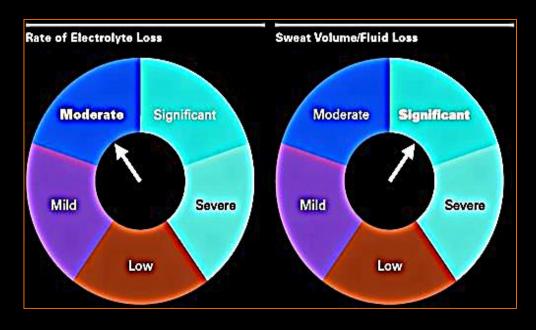
Electrolytes Pivotal to Movement

Each ion has it's own rules and body movement is a result of each of these ions!

Overlooked

NFL Electrolyte Monitoring

2014		LBS IN	LB OUT	CHANG	ΔIN k	g %	Dehy	luid Pre	Fluid pos	t Flui	ds (L)	time	Gross Swt SwtR		%replace	ed Swt	Na+ Na	a+ loss	Total Na+	Na+ loss	Swt Cl-
Player	WBGT (°F))						iters	liters	con	sumed	(hr)	liters	l/hr		mm	ol/I (m	ng/I)	loss (mg)	per hr (mg	mmol/l
		239.6	235.1	4.5	2.045455	1.8781	13 3.	22 1.	513 1.6	507	2.15	3.652455	1.698816	43.99781	15	345	1260.097	586.091	.5 21	743.4	2715.235
		246.3	242	4.3	2.0	1	.7 2.0	27 0.8	336 1.1	191	2.0	3.15	1.57	38	16	368	1158	57	9 23	814	2,561
		240.8	237.2	3.6	1.6	1	.5 2.6	68 1.	745 0.9	923	2.0	2.56	1.28	36	121	2783	7123	356	51 108	3,823	9,785
		250	250.1	-0.1	0.0	0	.0 3.8	85 1.	209 2.6	576	2.0	2.63	1.32	102	11	253	666	33	3 17	602	1,583
		251.8	249.6	2.2	1.0	0	.9 2.8	57 0.4	173 2.3	884	2.0	3.38	1.69	70	24	552	1868	93	4 29	1,027	3,474
		345	341	4	1.82	1	.2 3.0	06 0.8	126	52.9	3975.3	3315 18	348.9914	0.369798	33 40	920	3632	181	.6 3	106	419
		312.5	309.2	3.3	1.50	1	.1 3.7	88 0.	73 1,	281	3	,719	1,859	0.3	37 54	1242	5656	282	.8 35	1239	5642
		282	272	10	4.55	3	.5 2.2	74 0.4	11 4,	892	16	,908	8,454	1.6	59 34	782	5005	250	36	1274	8157
										792	2	,249	1,124	0.2	22						
									1,	737	5	,342	2,671	0.5	53						

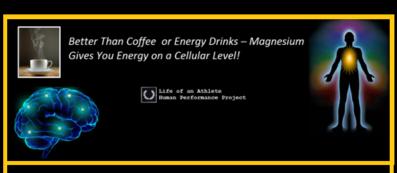

1.1

1.3

ELECTROLYTE ANALYSIS

PATCHES

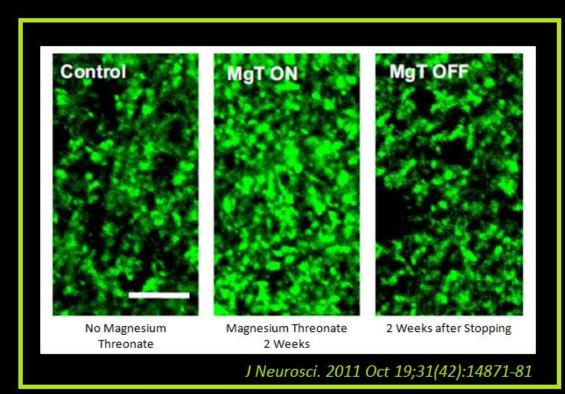
Cotton thread to monitor athletes' dehydration

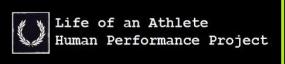


Nicola Coppedè and colleagues from the Institute of Materials for Electronics and Magnetism in Parma

Mg

200 Functions in BRAIN CNS


Magnesium Deficient Athletes


> Life of an Athlete Human Performance Project

You will never know what real power feels like 'til you get your Mg!

200 Brain/CNS functions related to Mg levels!

Take 450-650mg of Mg!

reed Mg

Synaptic Density

Mg > greater brain function!

Neuromuscular connection is lost or diminished

How Optimal Happens

The connection between the brain and CNS and muscle must be trained and rested for optimal performance capacity to take place on a regular basis!

Random optimal performance can be seen occasionally in all athletes.

Time and Reconnective Processes

Ette Learning from examples

The Miami Heat are tired!

Fatigue 4 Levels

Neuro-Muscular Endocrine Structural Metabolic

4 games in 7 days
5 games in 7 days

The key factor in training and competing consistently at a high level is RECOVERY

Cumulative Fatigue

Nothing good happens after midnight

Remember what is important... You are an Athlete

facebook

wasting athletes time since 2004